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ABSTRACT

In this paper a vector lattice E containing subset B of E+ is studied. It is proved that if there
exists a Lebesgue linear topology T on E and E+ is T-closed then minimal lattice-subspaces with T-
closed positive cone exist. '
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1. Introduction

In 1966, Polyrakis [5] has studied, supposed that B = {XI, x2, x } is a finite subset of C+(Q),
where Q is a compact, Hausdorff topological space, the functions Xi are linearly independent and
the existence.

In the present paper, the existence of minimal lattice-subspaces of a vector lattice E which
contains a

subset B of E+ is studied. In the theory of Banach lattices (and in epplications) we are interested
in a latticesubspace of E containing B which is as "close" as possible to the linear subspace [B!
generated by B. Such a subspace is the sublatticeS(B) generated by B.

It is to be noted that lattice-subspaces have been employed in economics [2], [3].

Let E be a (partially) ordered vector space with positive cone E+ and Xa subspace of E. The
cone X n E: will be called the induced cone of X, and the ordering defined in X by this cone the
induced ordering. We will denote by X+ the induced cone ofX, i.e., X+ = x n E+. An ordered
subspace of E is a subspace of E ordered by the induced cone. A lattice-subspace of E is an ordered
subspace of E which is also a vector lattice (Riesz space).

Let X be a lattice-subspace of E. Then, for each x, y e X we will denote by x Ay (resp. X vy)
the supremum (resp. infimum) of {x, y} in X. It is clear that

xvy<xvyandx AyKxAy.
whenever X vy, X Ay exist. If E is a vector lattice and x vy =x vy forany x, y e X then X is a
sublattice (Riesz subspace) of E. Let E be an ordered Banach space with positive cone E+. A
sequence {en} is a positive basis of E if {en} is a (Schauder) basis of E and E+ = {x = e, |4 e
R + for each i}. A positive basis {en} of E is unique (in the sense of a positive multiple). The

following result (see [I] or [12]) is very important for the study of finite-dimensional lattice-
subspaces.

2. Minimal Lattice-Subspaces

Let E be a vector lattice and B ¢ E+, B # 4. Let L be the set of lattice-subspaces of E, each of
which contains B. IfX e L and for any Y e L it holds .

YcX=>Y=2X,
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then we will say that X is a minimal lattice-subspace of E containing B.

If E is a vector lattice, then the sublattice generated by B is the minimum sublattice containing
B.

Even if E = IRm a minimum lattice-subspace of E containing B does not always exist. So we
state the following question :

Problem 1.1 Does a minimal lattice subspace of E containing B exist?

Let P be a cone of a linear space F (i.e. P is a convex subset of F. Rx e P for each x e P and e
R+ and pn(-P) = {O}. Suppose thatx,y e P. If there exists z e P with the properties : z -x, z-y e P
and for each M'e

p, W - X, w-y e P imply that w - z e P, then we will say that z is the supremum of {x, y} in P and
we will denote

z =sup p{x, Y}.
The infimum of {Xx, y} in P is defined analogously. If for each X, y e P, z = sup p{X, y} exists,
then inf ply} also exists.

If P is a cone of a linear space F and for each x, y e P the supremum of {x, y} exisis in P, then
we will say that P is a lattice cone of F.

If x = — x2 where XI, x2 e P, then it is easy to show that sup{x, O} — sup p{XI, x2)} - s the
supremum of {XI, x2} in X. Therefore the following result holds.

A cone P of a vector space F is a lattice-cone if and only if the subspace X, ordered by the
cone P, is a vector lattice.

In the next results of this paragraph we will suppose that E is a vector lattice equipped with a
linear topology T with the properties :

(I) E+ is T-closed;

(i) each increasing, order bounded net of E has a t-convergent subnet (i.e., ' the topology T is
Lebesgue).

Property (i) implies also that Tis Hausdorff because if we suppose that x e E, x 0 and 0 e x for
each open symmetric neighborhood V of zero, then 0 e -x + V; therefore x and -z belong to E+
and hence x = 0, contradiction.

If the topology T is order continuous (i.e., each decreasing net of E with infimum zero is T-
convergent to zero) and E is Dedekind complete, then T satisfies (ii). If the order intervals of E
are T-compact, the statement (ii) is also satisfied (for related results see [4, Theorem 10.13]).
Hence, the weak star topology of a dual Banach lattice and the weak topology of a Banach lattice
with order continuous norm [4, Theorem

11.9], have property (ii).
Proposition 1.2. Let (Pi)iel be a decreasing net of t-closed lattice cones of E+ (i.e., P c and i< j Pi
2P). Then P = is a T-closed lattice cone of E.

Proof. P is a T-closed cone of E+. Let X, y e P. Denote by the supremum of {x, y} in Pi. For each
i, j e I with i< j we have Pj c Pi ¢ E+', therefore,
X, y<zi<z
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Since T has property (ii), there exists a T-convergent subnet of (Zi)iel which we will still denote

by (Zi)iel. This net is also increasing, and let z = limielZi. Then for each j e | with i< j, we have:
Zi, - X, -y e Pjc Pi.

Since the cone Pi is T-closed, we have that z, z - X, z -y e Pi,
foreachiel.
Therefore

z,z-x,z-y € P.

Suppose that w e P with w - x, w -y e P. Since P C Pj we have that w - zj e Pj ¢ Pi foreach je |
with i

J. Hence w - z e Pi for each i; therefore w - z e P. So we have proved that z = supp {X, y};
therefore P is a

lattice cone.

Theorem 1.3. Let P ¢ E+ be a cone and let O(P) be the set of t-closed lattice cones of E+ each of
which

contains P. Then O(P) has minimal elements.
Proof. O(P) because E+ e O(P) and O(P), ordered by the relation "D", is a partially ordered set.

Suppose that F is a totally ordered subset of (P(P). Then by the previous result Q = Ais a T-
closed lattice cone of E. By Zorn's Lemma the theorem is true.

Proposition 1.4. Let (Xi)iE/ be a decreasing net of lattice-subspaces of E with T-closed positive
cones. Let X = nielxi, Y = X-and =Y n E+. Then

(i) & =ni€/x:.
(i) YeX, Y+ and Yis a lattice-subspace of E with T-closed positive cone.
Proof. (i) X+ =xn= n rile/ x+.

(i) Y=X-X+ ¢ x. cxn =X+. Also %+=X:-{0}c v,
therefore X+ ¢ Y+. Hence X+ = Y+. The net (XI+)IEI is a decreasing net of T-closed lattice cones

of E+e, therefore Y+ is a T-closed lattice cone. Hence Y, is a lattice-subspace of E.

Theorem 1.5. Let B ¢ E+ and I(B) = {Yc E | Yis a lattice-subspace, Y+ is T-closed and B ¢ Y}.
Then 1(B) has minimal elements.

Proof. The set I(B) is nonempty because it contains E. The set I(B). ordered by the relation "2", is
a partially ordered set. Let F be a totally ordered subset of I(B). By the previous proposition there
exists Y e I(B) such that Yc A for each A e F. Therefore, by Zorn's Lemma I(B) has minimal
elements.

Corollary 1.6. Let E be a Banach lattice with order continuous norm and B ¢ E+. Then the set of
latticesubspaces of E with (norm) closed positive cone which contains B has minimal elements.
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